Abstract
As regards distributed hybrid flow shop scheduling with sequence-dependent setup times (DHFSP-SDST), three novel mixed-integer linear programming (MILP) models and a constraint programming (CP) model are formulated for the same-factory and different-factory environments. The three novel MILP models are based on two different modeling ideas. The existing MILP model and the three proposed MILP models are compared in detail from several aspects, such as binary decision variables, continuous decision variables, constraints, solution performance and solution time. By solving the benchmarks in existing studies, the effectiveness and superiority of the proposed MILP and CP models are proved. Experimental results show that the MILP model of sequence-based modeling idea performs best, the MILP model of adjacent sequence-based modeling idea takes the second place and the existing MILP model of position-based modeling idea performs worst. The CP model is more efficient and effective than MILP models. In addition, compared with the existing meta-heuristic algorithms (e.g., DABC and IABC), the proposed MILP models prove the optimal solutions of 37 instances and improve 17 current best solutions. The CP model solves all the 45 instances to optimality and improves 19 current best solutions for benchmarks in the existing studies
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.