Abstract
The puncture method specifies black hole data on a hypersurface with the aid of a conformal rescaling of the metric that exhibits a coordinate singularity at the puncture point. When constructing puncture initial data by solving the Hamiltonian constraint for the conformal factor, the coordinate singularity requires special attention. The standard way to treat the pole singularity occurring in wormhole puncture data is not generally applicable to trumpet puncture data. We investigate a new approach based on inverse powers of the conformal factor and present numerical examples for single punctures of the wormhole and 1+log-trumpet type. Additionally, we describe a method to solve the Hamiltonian constraint for two 1+log trumpets for a given extrinsic curvature with non-vanishing trace. We investigate properties of this constructed initial data during binary black hole evolutions and find that the initial gauge dynamics is reduced.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have