Abstract

Backrooms are an important echelon of the retail supply chain. However, research focus has been mostly targeted to optimise both distribution centres and stores' sales area. In this paper, we propose two mathematical programming formulations to solve the grocery backroom sizing problem. This problem consists of determining the dimension of each storage department in the backroom area to optimise its overall efficiency. The first formulation is a bottom-up approach that aims to reduce the backroom life-cycle costs by determining the optimum floor space and storage height for each department. The second is a top-down approach based on Data Envelopment Analysis (DEA), which determines the efficient level of storage floor space for each backroom department, based on a comparison with the benchmarks observed among existing stores. Each approach has distinct characteristics that turn the models suitable for different retail contexts. We also describe the application of the proposed approaches to a case study of a European retailer. The application of this methodology in the design process demonstrated substantial potential for space savings (6% for the bottom-up model and 16% for the top-down model). This space reduction should either allow higher revenues in the sales area and/or lower backroom-related costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call