Abstract

Abstract This paper studies the Feeder Vehicle Routing Problem (FVRP), a new variant of the vehicle routing problem (VRP), in which each customer is served by either a large (truck) or a small vehicle (motorcycle). In this particular type of delivery, the trucks and the motorcycles must depart from the depot, visit the customers, and eventually return to the depot. During the delivery process, the motorcycles travel to the truck locations for reloading. The ant colony optimization (ACO) algorithm is employed for solving the problem with the objective of determining the number of dispatching sub-fleets and optimal routes to minimize the total cost (fixed route and travel costs). Three benchmark datasets are generated to examine the performance of the FVPR. For comparison purposes, all instances are executed by dispatching only trucks as in the traditional VRP and a four-stage hierarchical heuristic. Additionally, ACO is compared to optimal solutions for small instances. The results indicate that the proposed ACO algorithm yields promising solutions particularly for large instances within a reasonable time frame in an efficient manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.