Abstract

Nonlinear boundary value problems (BVPs) are more tedious to solve than their linear counterparts. This is observed in the extra computation required when determining the missing conditions in transforming BVPs to initial value problems. Although a number of numerical approaches are already existent in literature to solve nonlinear BVPs, this article presents a new block method with improved accuracy to solve nonlinear BVPs. A m+1th-step block method is developed using a modified Taylor series approach to directly solve fourth-order nonlinear boundary value problems (BVPs) where m is the order of the differential equation under consideration. The schemes obtained were combined to simultaneously produce solution to the fourth-order nonlinear BVPs at m+1 points iteratively. The derived block method showed improved accuracy in comparison to previously existing authors when solving the same problems. In addition, the suitability of the m+1th-step block method was displayed in the solution for magnetohydrodynamic squeezing flow in porous medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.