Abstract

In real world engineering optimization problems many constraints must be considered due to the imperfect conditions of the systems or process. Therefore, constraint handling methods are integrated into optimization algorithms. However, since the constraints are succeeded by the algorithm, their value is not considered or watched. Alternatively, it is possible to convert constraints to objectives and these many-objective constraint real-world optimization problems are changed to many-objective optimization problems. In this research for this purpose five real world engineering design problems are converted into many-objective optimization problem which are Gear Train Design, Pressure Vessel Design, Two Bar Truss Design, Disc Brake Design and Vibrating Platform Design problems. The problems are solved by using multi-objective optimization algorithms (NSGA-II, MOEA/D, MOEA/D-DE, MPSO/D and MOPSO) and their performance is compared by using the hypervolume metric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call