Abstract
Artificial intelligence (AI) refers to intelligence artificially realized through computation. AI has emerged as one of the promising computer science discipline originated in mid-1950. Over the past few decades, AI based random search algorithms, namely, genetic algorithm, ant colony optimization, and so forth have found their applicability in solving various real-world problems of complex nature. This chapter is mainly concerned with the application of some AI based random search algorithms, namely, genetic algorithm (GA), ant colony optimization (ACO), simulated annealing (SA), artificial immune system (AIS), and tabu search (TS), to solve the machine loading problem in flexible manufacturing system. Performance evaluation of the aforementioned search algorithms have been tested over standard benchmark dataset. In addition, the results obtained from them are compared with the results of some of the best heuristic procedures in the literature. The objectives of the present chapter is to make the readers fully aware about the intricate solutions existing in the machine loading problem of flexible manufacturing systems (FMS) to exemplify the generic procedure of various AI based random search algorithms. Also, the present chapter describes the step-wise implementation of search algorithms over machine loading problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.