Abstract

Machine breakdowns have been recognised in flexible manufacturing systems (FMS) as the most undesirable characteristic adversely affecting the overall efficiency. In order to ameliorate product quality and productivity of FMS, it is necessary to analyse, as well as to minimise the effect of breakdowns on the objective measures of various decision problems. This paper addresses the machine loading problem of FMS with a view to maximise the throughput and minimise the system unbalance and makespan. Moreover, insufficient work has been done in the domain of machine loading problem that considers effect of breakdowns. This motivation resulted in a potential model in this paper that minimises the effect of breakdowns so that profitability can be augmented. The present work employs an on-line machine monitoring scheme and an off-line machine monitoring scheme in conjunction with reloading of part types to cope with the breakdowns. The proposed model bears similarity with the dynamic environment of FMS, hence, termed as the dynamic machine loading problem. Furthermore, to examine the effectiveness of the proposed model, results for throughput, system unbalance and makespan on different dataset from previous literature has been investigated with application of intelligence techniques such as genetic algorithms (GA), simulated annealing (SA) and artificial immune systems (AIS). The results incurred under breakdowns validate the robustness of the developed model for dynamic ambient of FMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call