Abstract
The method of approximate inverse is a mollification method for stably solving inverse problems. In its original form it has been developed to solve operator equations in L2-spaces and general Hilbert spaces. We show that the method of approximate inverse can be extended to solve linear, ill-posed problems in Banach spaces. This paper is restricted to function spaces. The method itself consists of evaluations of dual pairings of the given data with reconstruction kernels that are associated with mollifiers and the dual of the operator. We first define what we mean by a mollifier in general Banach spaces and then investigate two settings more exactly: the case of Lp-spaces and the case of the Banach space of continuous functions on a compact set. For both settings we present the criteria turning the method of approximate inverse into a regularization method and prove convergence with rates. As an application we refer to x-ray diffractometry which is a technique of non-destructive testing that is concerned with computing the stress tensor of a specimen. Since one knows that the stress tensor is smooth, x-ray diffractometry can appropriately be modelled by a Banach space setting using continuous functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.