Abstract

In this paper, we propose a predictor–corrector primal–dual approach for the doubly modified logarithmic barrier function ($$\hbox {M}^{2}\hbox {BF}$$) method in order to solve Optimal Reactive Power Flow (ORPF) problems. The $$\hbox {M}^{2}\hbox {BF}$$ is a modification of the Polyak’s modified logarithmic barrier function (MBF) and is also a particular element of a recent family of nonquadratic penalty functions for augmented Lagrangian methods for handling convex problems only with inequality constraints. We also propose a global convergence strategy to be inserted in the proposed algorithm, which is developed over weak assumptions concerning the primal Hessian matrix. The resulting predictor–corrector primal–dual $$\hbox {M}^{2}\hbox {BF}$$ approach is applied for solving ORPF problems involving power systems with 57, 89, 118, 200, 300, 1354, 2007 and 2869 buses. A comparison with two state-of-the-art methods is performed. Numerical results show that the proposed approach is competitive and capable of solving ORPF problems for small to large-scale power systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.