Abstract

Abstract This paper proposes a predictor–corrector primal–dual modified log-barrier interior–exterior point method with global convergence and cubic fitting strategies for solving the Reactive Optimal Power Flow (ROPF) problem. The interior–exterior approach is a variant of the primal–dual nonlinear rescaling method, recently proposed. The application of the global convergence strategy produces only descent directions, even if the optimization problem is non-linear and non-convex. The application of a cubic fitting strategy for modified log-barrier functions preserve the continuity and also the first and second-order derivatives of the logarithm near the boundary of the feasible set. Some updating rules for the Lagrange multiplier estimates are theoretically and numerically evaluated. Numerical tests and comparisons with classical interior point methods, involving the electrical systems of 3, 9, IEEE-14, IEEE-30, IEEE-57, IEEE-118, IEEE-162 and IEEE-300 buses, are performed, which demonstrate the robustness and efficiency of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.