Abstract

This paper presents an end-to-end deep learning method to solve geometry problems via feature learning and contrastive learning of multimodal data. A key challenge in solving geometry problems using deep learning is to automatically adapt to the task of understanding single-modal and multimodal problems. Existing methods either focus on single-modal or multimodal problems, and they cannot fit each other. A general geometry problem solver should obviously be able to process various modal problems at the same time. In this paper, a shared feature-learning model of multimodal data is adopted to learn the unified feature representation of text and image, which can solve the heterogeneity issue between multimodal geometry problems. A contrastive learning model of multimodal data enhances the semantic relevance between multimodal features and maps them into a unified semantic space, which can effectively adapt to both single-modal and multimodal downstream tasks. Based on the feature extraction and fusion of multimodal data, a proposed geometry problem solver uses relation extraction, theorem reasoning, and problem solving to present solutions in a readable way. Experimental results show the effectiveness of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call