Abstract

This paper is a direct offspring of the work of Garbaczewski and Stephanovich [“Lévy flights and nonlocal quantum dynamics,” J. Math. Phys. 54, 072103 (2013)] where basic tenets of the nonlocally induced random and quantum dynamics were analyzed. A number of mentions were made with respect to various inconsistencies and faulty statements omnipresent in the literature devoted to so-called fractional quantum mechanics spectral problems. Presently, we give a decisive computer-assisted proof, for an exemplary finite and ultimately infinite Cauchy well problem, that spectral solutions proposed so far were plainly wrong. As a constructive input, we provide an explicit spectral solution of the finite Cauchy well. The infinite well emerges as a limiting case in a sequence of deepening finite wells. The employed numerical methodology (algorithm based on the Strang splitting method) has been tested for an exemplary Cauchy oscillator problem, whose analytic solution is available. An impact of the inherent spatial nonlocality of motion generators upon computer-assisted outcomes (potentially defective, in view of various cutoffs), i.e., detailed eigenvalues and shapes of eigenfunctions, has been analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.