Abstract

Prosperetti’s seminal Physalis method, an Immersed Boundary/spectral method, had been used extensively to investigate fluid flows with suspended solid particles. Its underlying idea of creating a cage and using a spectral general analytical solution around a discontinuity in a surrounding field as a computational mechanism to enable the accommodation of physical and geometric discontinuities is a general concept, and can be applied to other problems of importance to physics, mechanics, and chemistry. In this paper we provide a foundation for the application of this approach to the determination of the distribution of electric charge in heterogeneous mixtures of dielectrics and conductors. The proposed Physalis method is remarkably accurate and efficient. In the method, a spectral analytical solution is used to tackle the discontinuity and thus the discontinuous boundary conditions at the interface of two media are satisfied exactly. Owing to the hybrid finite difference and spectral schemes, the method is spectrally accurate if the modes are not sufficiently resolved, while higher than second-order accurate if the modes are sufficiently resolved, for the solved potential field. Because of the features of the analytical solutions, the derivative quantities of importance, such as electric field, charge distribution, and force, have the same order of accuracy as the solved potential field during postprocessing. This is an important advantage of the Physalis method over other numerical methods involving interpolation, differentiation, and integration during postprocessing, which may significantly degrade the accuracy of the derivative quantities of importance. The analytical solutions enable the user to use relatively few mesh points to accurately represent the regions of discontinuity. In addition, the spectral convergence and a linear relationship between the cost of computer memory/computation and particle numbers results in a very efficient method. In the present paper, the accuracy of the method is numerically investigated by example computations using one dielectric particle, one isolated conductor particle, one conductor particle connected to an external source with imposed voltage, and two conductor/dielectric particles with strong interactions. The efficiency of the method is demonstrated with one million particles, which suggests that the method can be used for many important engineering applications of broad interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.