Abstract
Reconstruction based algorithms play an important role in the multi-frame super-resolution problem. A group of images of the same scene are fused together to produce an image with higher spatial resolution, or with more visible details in the high spatial frequency features. Demosaicing algorithms interpolate missing pixels in a raw image taken from one Charged Coupled Device (CCD) array, upsampling the number of the pixels present in the image. Since super-resolution (SR) and demosaicing are the two faces of the same problem it is natural to address them together. In this paper it is: (i) shown that correct modelling of the Bayer pattern in the generative process improves the super-resolution performance for colour images, and (ii) an algorithm that incorporates the two colour prior into the probabilistic model is designed. The algorithm presented in this paper focuses on the classes of images that have two dominant colours, i.e. most of the areas in the image are uniformly coloured. A convex optimization procedure for joint super-resolution and demosaicing is developed which outperforms state-of-the-art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.