Abstract

In most application problems, the exact values of the input parameters are unknown, but the intervals in which these values lie can be determined. In such problems, the dynamics of the system are described by an interval-valued differential equation. In this study, we present a new approach to nonhomogeneous systems of interval differential equations. We consider linear differential equations with real coefficients, but with interval initial values and forcing terms that are sets of real functions. For each forcing term, we assume these real functions to be linearly distributed between two given real functions. We seek solutions not as a vector of interval-valued functions, as usual, but as a set of real vector functions. We develop a method to find the solution and establish an existence and uniqueness theorem. We explain our approach and solution method through an illustrative example. Further, we demonstrate the advantages of the proposed approach over the differential inclusion approach and the generalized differentiability approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.