Abstract
A class of matrix optimization problems can be formulated as a linear variational inequalities with special structures. For solving such problems, the projection and contraction method (PC method) is extended to variational inequalities with matrix variables. Then the main costly computational load in PC method is to make a projection onto the semi-definite cone. Exploiting the special structures of the relevant variational inequalities, the Levenberg–Marquardt type projection and contraction method is advantageous. Preliminary numerical tests up to 1000 × 1000 matrices indicate that the suggested approach is promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.