Abstract

Bismuth-based materials have been studied as alternatives to lead-based perovskite materials for photovoltaic applications. However, poor film quality has limited device performance. In this work, we developed a solvent-engineering method and show that it is applicable to several bismuth-based compounds. Through this method, we obtained compact films of methylammonium bismuth iodide (MBI), cesium bismuth iodide (CBI), and formamidinium bismuth iodide (FBI). On the basis of film growth theory and experimental analyses, we propose a possible mechanism of film formation. Additionally, we demonstrate that the resultant compact MBI film is more suitable to fabricate efficient and stable photovoltaic devices compared to baseline MBI films with pinholes. We further employed a new hole-transporting material to reduce the valence-band offset with the MBI. The best-performing photovoltaic device exhibits an open-circuit voltage of 0.85 V, fill factor of 73%, and a power conversion efficiency of 0.71%, the highest r...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call