Abstract

Solvent transport in membranes composed of stacked sheets of graphene oxide (GO) with molecular scale channels and a complex arrangement of hydrophobic and hydrophilic domains is not well understood. Here, we observe that the interlayer space between GO sheets expands in different solvents without disturbing the membrane integrity and is typically larger in aqueous media compared to nonaqueous media. However, the membranes have a tighter molecule sieving feature in aqueous media as demonstrated by lower permeance and higher solute rejection arising from interfacial water layers "sticking" to charged polar groups. As a result of this polar interaction, the permeance of polar solvents in GO membrane scales inversely to the polarity of the solvent, which is contrary to other polymeric and ceramic hydrophilic membranes and also scales inversely to the viscosity of solvents as per continuum expectations. We highlight the extended solvent-handling space of GO membranes, such as in polar protic, polar aprotic, and nonpolar solvents, demonstrating versatility over a commercial nanofiltration membrane, and we predict exciting new applications in advanced separation engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.