Abstract

A novel composite barrier comprising of hydrophilic and solvent resistant chitosan (CS) membrane on porous solvent resistant poly(ether-block-amide) (PEBA-2533) substrate was synthesized for pervaporation (PV) based dehydration of the polar aprotic n-methyl-2-pyrolidone (NMP) green solvent. The composite barrier was crosslinked with tetraethyl orthosilicate (TEOS) to control swelling and enhance selectivity. Operating parameters such as feed water concentration, permeate pressure and membrane thickness were varied to assess membrane flux and selectivity. A two-dimensional finite element method (FEM) model was developed to predict the concentration profile within the membrane through computational fluid dynamics (CFD). On the basis of complete mixing experiments, a numerical simulation was performed to predict membrane area requirement and exit streams’ compositions for commercial pervaporation units operated in plug flow mode. Both unmodified chitosan and tetraethyl orthosilicate crosslinked composite membranes successfully separated feed mixture containing 4.6wt% water by exhibiting water fluxes of 0.024 and 0.019kg/m2h, whereas the corresponding selectivities were found to be as high as 182 and 225, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.