Abstract

Two water-stable indium metal-organic frameworks, (NH2Me2)3[In3(BTB)4] ⋅ 12DMA ⋅ 4.5H2O (In-MOF-1) and (NH2Me2)9[In9O6(BTB)8(H2O)4(DMSO)4] ⋅ 27DMSO ⋅ 21H2O (In-MOF-2) (BTB=4,4',4''-benzene-1,3,5-tribenzoate) with 3D interpenetrated structure has been constructed by regulating solvents. Structure analysis revealed that In-MOF-1 has a three-dimensional (3D) structure with a single metal core, while In-MOF-2 features an octahedron cage constructed by three kinds of metal clusters to further form a 3D structure. The fluorescence investigations showed that In-MOF-1 and In-MOF-2 are potential MOF-based fluorescent sensors to detect acetone and Fe3+ ions in EtOH or water with high sensitivity, excellent selectivity, recyclability and a low limit of detection. Moreover, the fluorescence mechanisms of In-MOF-1 and In-MOF-2 toward acetone and Fe3+ ions were further explained. In addition, In-MOF-2 has higher thermal and framework stability than In-MOF-1. The activated In-MOF-2 presents a high BET surface area of 998.82 m2g-1 and a pore size distribution of 8 to 16 Å. At the same time, In-MOF-2 exhibits high selective CO2 adsorption for CO2/CH4 and CO2/N2, respectively. Furthermore, the adsorption sites and adsorption isotherms were predicted using grand canonical Monte Carlo (GCMC) simulations, and the adsorption energy of the lowest-energy adsorption configuration was calculated using molecular dynamics (MD) simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.