Abstract

Heat-resistant explosives play a vital role in indispensable applications. For this, we have synthesized a novel, three-dimensional, solvent-free energetic metal-organic framework (EMOF) potassium 3,5-dinitro-6-oxo-1,6-dihydropyrazin-2-olate (KDNODP) straightforwardly. The synthesized EMOF was characterized through IR, NMR spectroscopy, elemental analysis, and differential scanning calorimetry studies. Furthermore, single-crystal X-ray diffraction provided a complete description of KDNODP. It exhibits a three-dimensional EMOF structure with remarkably balanced properties such as high density (2.11 g cm-3), excellent thermal stability (291 °C), good detonation performance (8127 m s-1 and 26.94 GPa) and low mechanical sensitivity (IS=35 J; FS=360 N) than the commonly used heat-resistant explosives HNS (density=1.74 g cm-3; VOD=7164 m s-1, DP=21.65 GPa, IS=5 J) as well as the similar reported energetic potassium MOFs. To gain insights into the packing and intermolecular interactions, the Hirshfeld surface and a 2D fingerprint analysis were examined. Additionally, scanning electron microscopy was used to investigate the particle size and morphological characteristics of KDNODP. These outcomes highlight a successful method for creating 3D EMOF based on a six-membered heterocycle as a potential heat-resistant energetic material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.