Abstract

Dimension and solvent molecules affect the performance of energetic metal-organic frameworks (EMOFs). High-dimensional EMOFs are usually characterized by high stability and low sensitivity due to their complex network structure. However, solvent molecules affect the detonation performance of EMOFs, and these molecules may be removed at low temperatures, resulting in structural collapse and affecting the stability of EMOFs. In this work, zero-dimensional (0D) Co(AFTO)2·(H2O)2 (EMOF 1) and Ni(AFTO)2·(H2O)2 (EMOF 2) with coordinated water molecules and [Co(AFTO)2]n·EtOH (EMOF 3) and [Ni(AFTO)2]n (EMOF 4) (AFTO = 5-(4-amino-furazan-3-yl)-1-hydroxytetrazole) with high-dimensional structure were synthesized using hydrothermal and self-assembly methods in ethanol, respectively. Structural and performance tests show that EMOF 3 and 4 exhibit remarkable thermal stability and low mechanical sensitivity. This method is a simple, effective, and green technique for synthesizing high-dimensional EMOFs with high stability through self-assembly in ethanol solution. In addition, EMOF 3 and 4 can be used as primary green laser explosives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.