Abstract

Five different types of elastomers were examined as the matrix materials in the preparation of non‐fluorinated proton exchange membranes utilizing a solvent‐free route via the in situ reaction of sodium 4‐styrenesulfonate (NaSS). The morphology of the elastomer/NaSS vulcanizates was studied to evaluate the effect of polarity, viscosity and saturation degree of the elastomer matrixes. Much better dispersion of NaSS was found in chlorosulfonated polyethylene rubber (CSM) and hydrogenated nitrile butadiene rubber (HNBR) matrixes than in the other three types of elastomer matrixes. For CSM/NaSS and HNBR/NaSS proton exchange membranes, distinctive membrane properties were observed and correlated with their different structure and morphologies. The CSM/NaSS membranes exhibited the proton conductivity as high as ~0.03 S cm−1 and the selectivity (the ratio of proton conductivity to methanol permeability) higher than that of Nafion. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call