Abstract
AbstractTo obtain electrostatic charge dissipative (ESD) materials, high‐density polyethylene (HDPE) and polyaniline (PANI) blends are synthesized by the solution blending method. To prepare the blends, 0.5, 1.0, and 3.0 wt% of PANI are introduced into the HDPE matrix. The prepared blends are investigated by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), and scanning electron microscope (SEM). Additionally, stress–strain curves are used to examine the blends' mechanical properties. Polyaniline additions indicated an increase in thermal stability by approximately 1°C in the blends but decrease in mechanical properties. The four‐probe technique is used to determine the electrical conductivity of blends, which is found to be between 10−7 and 10−10 S/cm. The results of the conductivity values have indicated that all blends have great potential to be used as antistatic materials. For antistatic applications, the ESD performance of the blends is determined at different corona voltages. Blends achieved the antistatic requirements with a 10% cutoff decay time of approximately 2.0 s and a 1/e time of approximately 1.0 s, demonstrating quick dissipation of static charges. According to antistatic decay times, it has been shown that all blends obtained in this study can be used as antistatic material at 3 kV corona voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.