Abstract

This research was conducted to evaluate the potential of ultrasonic irradiation during the solvent extraction of metals, and comparing its efficiency with a mechanically stirred system (MSSX). The simultaneous extraction of zinc and cadmium from sulphate solutions was investigated by di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an organic extractant which was diluted (20%) in kerosene at the organic: aqueous phase ratio of 1:1 and the temperature of 25°C. The influence of some critical parameters, including contact time, solution pH, ultrasonic power, and zinc/cadmium ratio were investigated on the extraction of the metals. Results show that D2EHPA selectively extract zinc rather than cadmium in both mechanically and ultrasonically mixed systems. It was also found that increase of ultrasonic power from 10 to 120W cause a small decrease in zinc extraction; while, at low and high levels of the induced power, cadmium extraction was significantly decreased. Results also show that maximum extraction amounts of zinc (88.7%) and cadmium (68.2%) by the MSSX system occurred at the pH of 3 and the contact times of 3 and 20min, respectively. Although capability of extraction in the ultrasonically assisted solvent extraction (USAX) system for both metals was higher, the selectivity was lower than that of MSSX system under different conditions especially in high zinc/cadmium ratios. It can be concluded that physical effects (i.e. mixing) inducing at low ultrasonic powers (below 60W) mainly results in increasing solvent extraction rate, while the chemical actions applied at the higher powers have a negative outcome on the extraction rate particularly for cadmium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.