Abstract

A fast and sensitive method for the determination of atropine, an alkaloid closely related to cocaine, is proposed. The principles of on-line ion-pair formation of alkaloid-metal complexes and liquid-liquid extraction are applied to the chemiluminescence determination of atropine. On mixing with a reversed micellar medium of cetyltrimethylammonium chloride in dichloromethane-cyclohexane (1:1 v/v)-water (0.3 M Na2CO3) containing luminol, the ion-pair complex of tetrachloroaurate(III) with atropinium produced an analytical chemiluminescence signal when it entered the reversed micellar water pool. Using the reverse-flow injection and chemical conditions optimized for atropine in aqueous samples, a detection limit of 1 ng/mL was achieved and a linear calibration graph was obtained with a wide dynamic range from 10 ng/mL to 100 micrograms/mL. The proposed method is simple and provides a good precision with a relative standard deviation (n = 6) of ca. 3% at the atropine concentration of 100 ng/mL. After a preliminary study involving the potential interference from species of organic, inorganic, and metallic nature, the method was applied to the determination of atropine in artificial urine samples and of atropine and scopolamine in pharmaceutical formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.