Abstract

The study on the relationship between the structure and spectroscopic properties of styrylquinolinium dyes were carried out by measuring the electronic visible absorption, steady-state and time-resolved fluorescence spectra of quinoline based hemicyanine dyes. The influence of the solvent on absorption and emission spectra and the solvatochromic properties, observed for both ground and first excited states, for all the dyes were applied for the evaluation of their excited state dipole moments. The ground state dipole moments of dyes under the study were established by applying ab initio calculations. The measured, using solvatochromic methods, excited state dipole moments of tested hemicyanines are in the range from 5.38 to 18.90 D and the change in the dipole moments caused by excitation were found to differ from 1.88 to 6.64 D. It was observed that for all tested dyes the dipole moments of the excited states were higher than those of a ground states. The fluorescence lifetime measurements with picosecond resolution was performed for entire series of hemicyanine dyes possessing different dialkylamino groups attached to the phenyl ring. The average lifetimes of the dye fluorescence, determined from the measured data by multi-order exponential decay curve fitting, were in the range from about 120 to 1200 ps at the fluorescence peak wavelength. The fluorescence lifetime measurements were performed for dyes in ethyl acetate solutions. The time-resolved fluorescence spectra measurements allowed to propose the mechanism of the dyes excited states deactivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.