Abstract
Abstract Data from the optical Kerr effect, time-resolved Stokes shift, and dielectric dispersion experiments on 21 common room temperature solvents are collected and compared. The correlation functions of the collective variables (polarizability, solvation energy, and dipole moment fluctations) responsible for each observable are first extracted from the experimental data and compared directly. In any given solvent the decay times of these various correlation functions are often vastly different. Such differences mainly result from the fact that intermolecular correlations affect the collective variables sampled by each technique in a different manner. To compare dynamics at a more basic level, power law relations are applied in an attempt to account for these correlations and to examine the extent to which the collective dynamics in these three experiments can be viewed as arising from the same underlying single-particle motions (primarily rotations). The Stokes shift and dielectric correlation functions can be reasonably inter-related in this manner, but the polarizability anisotropy monitored with Kerr experiments cannot be as simply related to the former two dynamics, probably due to the importance of collision-induced effects in the latter case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.