Abstract

The choice of a solvent and the reaction conditions often defines the overall behavior of a homogeneous catalytic system by affecting the preferred reaction mechanism and thus the activity and selectivity of the catalytic process. Here, we explore the role of solvation in the mechanism of ketone reduction using a model representative of a bifunctional Mn-diamine catalyst through density functional theory calculations in a microsolvated environment by considering explicit solvent and fully solvated ab initio molecular dynamics simulations for the key elementary steps. Our computational analysis reveals the possibility of a Meerwein–Ponndorf–Verley (MPV) type mechanism in this system, which does not involve the participation of the N–H moiety and the formation of a transition-metal hydride species in ketone conversion. This path was not previously considered for Mn-based metal–ligand cooperative transfer hydrogenation homogeneous catalysis. The MPV mechanism is strongly facilitated by the solvent molecules present in the reaction environment and can potentially contribute to the catalytic performance of other related catalyst systems. Calculations indicate that, despite proceeding effectively in the second coordination sphere of the transition-metal center, the MPV reaction path retains the enantioselectivity preference induced by the presence of the small chiral N,N′-dimethyl-1,2-cyclohexanediamine ligand within the catalytic Mn(I) complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.