Abstract
We employed molecular dynamics (MD) simulations coupled with umbrella sampling to explore the thermodynamics governing the exfoliation of a single graphene layer from a graphitic substrate in five different solvents such as dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), cyclohexane (CHX), and water. The substrate was modeled as a stack of three identical graphene layers with the graphene sheet undergoing exfoliation positioned on top of this stack. The initial configurations for each umbrella simulation were generated through steered MD simulations carried out along two distinct coordinates: one parallel and the other perpendicular to the graphene layers. Our analyses revealed a uniform wetting behavior for both the nanosheet and the graphitic substrate in all of the tested solvents. Consistent with experimental observations, the steered simulations confirmed that exfoliation is more favorable along the parallel direction than along the perpendicular one. All non-water solvents exhibit comparable effectiveness in the exfoliation of graphene. The calculated free energies of these solvents in parallel exfoliation consistently fell within the range of 90-100 kJ/mol/nm2. In perpendicular exfoliation, however, the corresponding energies converge to lower values. This difference is attributed to the nonequilibrium nature of the perpendicular exfoliation, primarily caused by the great steering velocity of the graphene sheet immediately after detachment from the substrate. This rapid motion of the nanosheet along the perpendicular coordinate results in an elevated system energy and heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.