Abstract

The dispersibility of nanoparticles in solvents remains difficult to predict and control. In this paper, the dispersibility of organically-modified nanoparticles in various solvents with different solvent properties and molecular sizes are investigated. The study indicates that solvent molecular size, in addition to the affinity between organic modifier and solvent molecules, affects the dispersibility of the nanoparticles. The experimental results imply that solvents with molecular size small enough can disperse nanoparticles more efficiently. In addition, based on the concept that solvent accommodation induces the enhancement of dispersibility, two approaches to improve nanoparticle dispersibility in desired solvents are proposed. One is the addition of a small amount of solvent with the right size and properties to both penetrate the modifier shell and to act as intermediate between the desired solvent and the organic modifier molecules. The other is dual-molecule modification to create additional space at modifier-shell surface for the penetration of the desired solvent molecules. The results of these approaches based on the concept of the solvent accommodation can enhance the dispersibility trends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.