Abstract

The intense solvatochromic behavior of several pentacyanoferrate complexes with aryl substituted 4,4′-bipyridines acting as ligands, was investigated in six hydroxylic and non hydroxylic solvents using UV-Visible spectroscopy. The metal-to-ligand-charge-transfer bands of the visible spectra of these compounds proved to be markedly affected by solvent polarity. In order to quantify the extent of the observed solvatochromism and reveal the dominant interactions which take place in the cybotactic region, resulting in solvatochromism, the Kamlet-Taft equation was used. This is a multiparametric linear-solvation-energy-relationship (LSER) widely used for the study of solvent effects on various physicochemical properties. Through this analysis it was proved that both specific and non specific interactions contribute to the observed solvatochromism. Furthermore, the preferential solvation of the complex salts was studied in binary solvent mixtures. Solvatochromism was used as the key approach to rationalize solvent-solute and solvent-solvent interactions in the binary solvent mixtures studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call