Abstract
In this paper, we provide an extensive classification of one- and two-dimensional diffusion processes which admit an exact solution to the Kolmogorov (and hence Black-Scholes) equation (in terms of hypergeometric functions). By identifying the one-dimensional solvable processes with the class of integrable superpotentials introduced recently in supersymmetric quantum mechanics, we obtain new analytical solutions. In particular, by applying supersymmetric transformations on a known solvable diffusion process (such as the Natanzon process for which the solution is given by a hypergeometric function), we obtain a hierarchy of new solutions. For two-dimensional processes, more precisely stochastic volatility models, the classification is achieved for a specific class called gauge-free models including the Heston model, the 3/2-model and the geometric Brownian model. We then present a new exact stochastic volatility model belonging to this class.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.