Abstract
Abstract Suppose that G is a finite solvable group. Let $t=n_c(G)$ denote the number of orders of nonnormal subgroups of G. We bound the derived length $dl(G)$ in terms of $n_c(G)$ . If G is a finite p-group, we show that $|G'|\leq p^{2t+1}$ and $dl(G)\leq \lceil \log _2(2t+3)\rceil $ . If G is a finite solvable nonnilpotent group, we prove that the sum of the powers of the prime divisors of $|G'|$ is less than t and that $dl(G)\leq \lfloor 2(t+1)/3\rfloor +1$ .
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have