Abstract
It is proved that consideration of the solvability problem for taking the discrete logarithm in a residue ring modulo composite M can be reduced to consideration of a similar problem in residue rings modulo pq, where p and q are prime divisors of M. For moduli of form pq, necessary and sufficient conditions for solvability checking are obtained in some cases. In addition, the problem of raising a solution of an exponential comparison in a residue ring modulo p α is solved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.