Abstract
The equations, which are not solved with respect to the highest derivative, are now actively studied. Such equations are also called the Sobolev type equations. Note that these equations in Banach spaces are studied quite well. Quasi-Sobolev spaces are quasi normalized complete spaces of sequences. Recently these spaces began to be studied. The interest to such spaces and its equations is connected with a desire to fill up the theory more than with practical applications. The paper is devoted to the study of solvability of the Cauchy problem and the Showalter -- Sidorov problem for a class of equations considered in the quasi-Sobolev spases. To this end we use properties of the equation operators, namely the relative boundedness of the operators. To illustrate abstract results we consider an analogue of the Hoff equation in the quasi-Sobolev spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computational and Engineering Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.