Abstract

In this paper we present some new results regarding the solvability of nonlinear Hammerstein integral equations in a special cone of continuous functions. The proofs are based on a certain fixed point theorem of Leggett and Williams type. We give an application of the abstract result to prove the existence of nontrivial solutions of a periodic boundary value problem. We also investigate, via a version of Krasnosel'skiĭ's theorem for the sum of two operators, the solvability of perturbed Hammerstein integral equations in the space of continuous functions of bounded variation in the sense of Jordan. As an application of these results, we study the solvability of a boundary value problem subject to integral boundary conditions of Riemann–Stieltjes type. Some examples are presented in order to illustrate the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.