Abstract

In this work we consider the Sobolev spaces generated by the norm of the power weighted grand Lebesgue spaces. It is considered $m$-th order elliptic equation with nonsmooth coefficients on bounded domain in $R^{n} $. This space is nonseparable and by using shift operator we define the separable subspace of it, in which infinitely differentiable functions are dense. The investigation needs to establish boundedness property of convolution regarding weighted grand Lebesgue spaces. Then on scheme of nonweighted case we establish solvability (strong sense) in the small of $m$-th order elliptic equations in power weighted grand Sobolev spaces. Note that in weighted spaces this question is considered for the first time in connection with certain mathematical difficulties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.