Abstract
By using integral operator, some oscillation criteria for second order elliptic differential equation$$ \sum^d _{i,j=1} D_i[A_{ij}(x)D_jy]+ q(x)f(y)=0, \;x \in \Omega\qquad \eqno{(E)} $$are established. The results obtained here can be regarded as the extension of the well-known Kamenev theorem to Eq.$(E)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.