Abstract
Eshelby’s inclusion problem is solved for non-elliptical inclusions in the context of two-dimensional thermal conduction and for cylindrical inclusions of non-elliptical cross section within the framework of generalized plane elasticity. First, we consider a two-dimensional infinite isotropic or anisotropic homogeneous medium with a non-elliptical inclusion subjected to a prescribed uniform heat flux-free temperature gradient. Eshelby’s conduction tensor field and its area average are first expressed compactly in terms of two boundary integrals avoiding the usual singularity and then specified analytically for arbitrary polygonal inclusions and for inclusions characterized by the finite Laurent series. Next, we are interested in a three-dimensional infinite isotropic or transversely isotropic homogeneous medium with a cylindrical inclusion of a non-elliptical cross section that undergoes uniform generalized plane eigenstrains. The solution to this problem is obtained by decomposing a generalized plane eigenstrain tensor into a plane strain part and an anti-plane strain part, exploiting the mathematical similarity between two-dimensional thermal conduction and anti-plane elasticity, and combining the relevant results of Zou et al. (Zou et al. 2010 J. Mech. Phys. Solids 58 , 346–372. ( doi:10.1016/j.jmps.2009.11.008 )) with those derived in the present work for Eshelby’s conduction tensor field and its area average.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.