Abstract
We are interested in acoustic wave propagation in time harmonic regime in a two-dimensional medium which is a local perturbation of an infinite isotropic or anisotropic homogeneous medium. We investigate the question of finding artificial boundary conditions to reduce the numerical computations to a neighborhood of this perturbation. Our objective is to derive a method which can extend to the anisotropic elastic problem for which classical approaches fail. The idea consists in coupling several semi-analytical representations of the solution in halfspaces surrounding the defect with a Finite Element computation of the solution around the defect. As representations of the same function, they have to match in the infinite intersections of the halfspaces. It leads to a formulation which couples, via integral operators, the solution in a bounded domain including the defect and its traces on the edge of the halfspaces. A stability property is shown for this new formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.