Abstract

The current work reports the lithium (Li) doping of a low-temperature processed zinc oxide (ZnO) electron transport layer (ETL) for highly efficient, triple-cation-based MA0.57FA0.38Rb0.05PbI3 (MA: methylammonium, FA: formamidinium, Rb: rubidium) perovskite solar cells (PSCs). Lithium intercalation in the host ZnO lattice structure is dominated by interstitial doping phenomena, which passivates the intrinsic defects in ZnO film. In addition, interstitial Li doping also downshifts the Fermi energy position of Li-doped ETL by 30 meV, which contributes to the reduction of the electron injection barrier from the photoactive perovskite layer. Compared to the pristine ZnO, the power conversion efficiency (PCE) of the PSCs incorporating lithium-doped ZnO (Li-doped) is raised from 14.07 to 16.14%. The superior performance is attributed to the reduced current leakage, enhanced charge extraction characteristics, and mitigated trap-assisted recombination phenomena in Li-doped devices, thoroughly investigated by means of electrochemical impedance spectroscopy (EIS) analysis. Li-doped PSCs also exhibit lower photocurrent hysteresis than ZnO devices, which is investigated with regard to the electrode polarization phenomena of the fabricated devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.