Abstract
The solution-processed zinc oxide (ZnO) electron transport layer (ETL) always exhibits ubiquitous defects, and its photocatalytic activity is detrimental for the organic solar cell (OSC) to achieve high efficiency and stability. Herein, an organic dye molecule, PDINN-S is introduced, to dope ZnO, constructing a hybrid ZnO:PDINN-S ETL. This hybrid ETL exhibits improved electron mobility and conductivity, particularly post-light exposure. The catalytic activity of ZnO is also effectively suppressed.Consequently, the efficiency and photo-stability of inverted non-fullerene OSCs are synergistically enhanced. The devices based on PM6:Y6/PM6:BTP-eC9 active layer with ZnO:PDINN-S as ETL give impressive power conversion efficiencies (PCEs) of 16.78%/17.59%, significantly higher than those with pure ZnO as ETL (PCEs=15.31%/16.04%). Moreover, ZnO:PDINN-S-based device shows exceptional long-term stability under continuous AM 1.5Gillumination (T80 = 1130 h) , overwhelming the reference device (T80 = 455h). In addition, IncorporatingPDINN-S into ZnO alleviate mechanical stress within the inorganic lattice, making ZnO:PDINN-S ETL more suitable for the fabrication of flexible devices. Overall, doping ZnO with organic dye molecules offers an innovative strategy for developing multifunctional and efficient hybrid ETL of the non-fullerene OSCs with excellent efficiency and photo-stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.