Abstract

Abstract The problem of inverse kinematics in Robotics, is a nonlinear mapping from a given cartesian coordinates to the desirable joint coordinates of the robot arm. It is found that an appropriately designed neural network can be trained to learn the non-linearity of the Inverse Kinematic Equation (IKE). We present an approach for solving the Forward Kinematic Equation (FKE) and the IKE by means of a Multi Layer Back-Propagation Neural Network (Rumelhart et al., 1986). The neural network approach is applied to a Two Degrees-of-Freedom (DOF) robot manipulator and the results are compared with those obtained using the analytical solution. The results obtained from the simulation of the neural network indicate a fairly accurate learning of the FKE and IKE by the Multi Layer Back-Propagation Neural Network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.