Abstract

Crystalline silicon double-heterojunction solar cells were fabricated using Si/organic and Si/Cs2CO3 heterojunctions. The front heterojunction is formed by spin-coating conductive polymer poly(3,4-ethyenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on n-type Czochralski (CZ) (100) silicon, which separates the photogenerated carriers and blocks the electron dark current while allowing the photocurrent to pass through. The rear heterojunction, formed by spin-coating Cs2CO3 and polyethylenimine (PEI) dissolved in 2-ethoxyethanol and Al metal evaporation, functions as a back surface field that reduces the hole dark current while allowing the electron photocurrent to pass through. The double-heterojunction device showed a power conversion efficiency of 12.7% under AM1.5G simulated solar light exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call