Abstract

Transfer learning was examined to predict current-voltage (I-V) characteristics of MOSFETs at cryogenic temperatures. An experimental dataset was obtained from approximately 800 silicon-on-insulator MOSFETs using an automated cryogenic wafer prober to pre-train a 3-hidden-layer neural network (NN) model. Transfer learning based on the NN model was then conducted using another small dataset from 2 bulk MOSFETs. The transfer learning NN model predicted more realistic I-V characteristics and threshold voltages than a control NN model trained using only the small dataset. This study demonstrates cryogenic MOSFET characteristics prediction from a small dataset to reduce time and financial costs for developing cryo-CMOS devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.