Abstract

In this paper, the possibility to use diketopyrrolopyrrole (DPP) for the construction of electrical devices designed to interact with animal cells was studied. For this purpose, the biocompatibility and electrical properties of the selected DPP derivative (3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethyl-hexyl)pyrrolo[3,4-c]pyrrole-1,4-dione) [referred as DPP(TBFu)2] were researched. The electrical properties were studied using model organic field-effect transistors. Mainly investigated was under what conditions maximum charge carrier mobility can be achieved. Using the cumulative effect of self-assembled monolayers on dielectrics and electrodes and detailed thermal analysis of the DPP, a higher charge carrier mobility was achieved than has been previously reported (5.5 × 10−3 cm2 V−1 s−1). The biocompatibility was studied based on a culture of 3T3 fibroblasts. This research revealed that DPP(TBFu)2 can be used in applications involving direct contact with living animal cells. The conclusions found with these model devices can be applied to components suitable for biosensing applications, e.g., water- or electrolyte-gated organic field-effect transistors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call