Abstract
Another approach for the solution of the inverse heat conduction problem is presented. The unknown boundary conditions are recovered from thermal strain and temperature measurements instead of temperature measurements only. It is required to calculate both the temperature field and the strains induced by this field. The sensitivity coefficient analysis and the results of two benchmark test cases show that it is possible to recover higher temporal frequencies when the inversion is done from strains instead of temperatures. An experimental setup was specially designed to validate the numerical results. The numerical predictions are verified. Special attention is given to the strain gage measurements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have