Abstract
We consider the following three functional equations123where f:R3→R.Considering their geometric meaning, equations (1) and (2) are known as ‘Cube’ and ‘Octahedron’ functional equations, respectively. Under the assumption of continuity, Haruki [2] has proved that (1) and (2) are equivalent. Etigson [3], has proved the equivalence of (1) and (2) under no regularity assumption. We will give here another proof. Also, under the assumption of continuity, Haruki has solved the ‘Cube’ functional equation. He gave the solution as a certain polynomial of fifth degree in x, y, z individually whose terms are the partial derivatives of a given polynomial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.